tf.mlir.experimental.run_pass_pipeline
Stay organized with collections
Save and categorize content based on your preferences.
Runs a pipeline over input module.
tf.mlir.experimental.run_pass_pipeline(
mlir_txt, pass_pipeline, show_debug_info=False
)
Args |
mlir_txt
|
Textual representation of the MLIR module.
|
pass_pipeline
|
Pass pipeline to run on module.
|
show_debug_info
|
Whether to include locations in the emitted textual form.
|
Returns |
A textual representation of the MLIR module corresponding to the
transformed module.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.mlir.experimental.run_pass_pipeline\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/compiler/mlir/mlir.py#L152-L167) |\n\nRuns a pipeline over input module.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.mlir.experimental.run_pass_pipeline`](https://www.tensorflow.org/api_docs/python/tf/mlir/experimental/run_pass_pipeline)\n\n\u003cbr /\u003e\n\n tf.mlir.experimental.run_pass_pipeline(\n mlir_txt, pass_pipeline, show_debug_info=False\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------------|-----------------------------------------------------------|\n| `mlir_txt` | Textual representation of the MLIR module. |\n| `pass_pipeline` | Pass pipeline to run on module. |\n| `show_debug_info` | Whether to include locations in the emitted textual form. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A textual representation of the MLIR module corresponding to the transformed module. ||\n\n\u003cbr /\u003e"]]