Computes scaled exponential linear: scale * alpha * (exp(features) - 1)
tf.nn.selu(
    features: Annotated[Any, TV_Selu_T], name=None
) -> Annotated[Any, TV_Selu_T]
if < 0, scale * features otherwise.
To be used together with
initializer = tf.variance_scaling_initializer(factor=1.0, mode='FAN_IN').
For correct dropout, use tf.contrib.nn.alpha_dropout.
See Self-Normalizing Neural Networks
| Args | |
|---|---|
| features | A Tensor. Must be one of the following types:half,bfloat16,float32,float64. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asfeatures. |