tf.nn.softmax
Stay organized with collections
Save and categorize content based on your preferences.
Computes softmax activations.
tf.nn.softmax(
logits, axis=None, name=None
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
Used for multi-class predictions. The sum of all outputs generated by softmax
is 1.
This function performs the equivalent of
softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis, keepdims=True)
Example usage:
softmax = tf.nn.softmax([-1, 0., 1.])
softmax
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0.09003057, 0.24472848, 0.66524094], dtype=float32)>
sum(softmax)
<tf.Tensor: shape=(), dtype=float32, numpy=1.0>
Args |
logits
|
A non-empty Tensor . Must be one of the following types: half ,
float32 , float64 .
|
axis
|
The dimension softmax would be performed on. The default is -1 which
indicates the last dimension.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type and shape as logits .
|
Raises |
InvalidArgumentError
|
if logits is empty or axis is beyond the last
dimension of logits .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.nn.softmax\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/nn_ops.py#L3869-L3907) |\n\nComputes softmax activations.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.math.softmax`](https://www.tensorflow.org/api_docs/python/tf/nn/softmax)\n\n\u003cbr /\u003e\n\n tf.nn.softmax(\n logits, axis=None, name=None\n )\n\n### Used in the notebooks\n\n| Used in the guide | Used in the tutorials |\n|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| - [Multilayer perceptrons for digit recognition with Core APIs](https://www.tensorflow.org/guide/core/mlp_core) - [TensorFlow basics](https://www.tensorflow.org/guide/basics) - [Introduction to Tensors](https://www.tensorflow.org/guide/tensor) - [Training \\& evaluation with the built-in methods](https://www.tensorflow.org/guide/keras/training_with_built_in_methods) | - [Uncertainty-aware Deep Learning with SNGP](https://www.tensorflow.org/tutorials/understanding/sngp) - [Integrated gradients](https://www.tensorflow.org/tutorials/interpretability/integrated_gradients) - [Custom training: walkthrough](https://www.tensorflow.org/tutorials/customization/custom_training_walkthrough) - [Image classification](https://www.tensorflow.org/tutorials/images/classification) - [Simple audio recognition: Recognizing keywords](https://www.tensorflow.org/tutorials/audio/simple_audio) |\n\nUsed for multi-class predictions. The sum of all outputs generated by softmax\nis 1.\n\nThis function performs the equivalent of \n\n softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis, keepdims=True)\n\nExample usage: \n\n softmax = tf.nn.softmax([-1, 0., 1.])\n softmax\n \u003ctf.Tensor: shape=(3,), dtype=float32,\n numpy=array([0.09003057, 0.24472848, 0.66524094], dtype=float32)\u003e\n sum(softmax)\n \u003ctf.Tensor: shape=(), dtype=float32, numpy=1.0\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------|----------------------------------------------------------------------------------------------------|\n| `logits` | A non-empty `Tensor`. Must be one of the following types: `half`, `float32`, `float64`. |\n| `axis` | The dimension softmax would be performed on. The default is -1 which indicates the last dimension. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type and shape as `logits`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|------------------------|--------------------------------------------------------------------------|\n| `InvalidArgumentError` | if `logits` is empty or `axis` is beyond the last dimension of `logits`. |\n\n\u003cbr /\u003e"]]