Help protect the Great Barrier Reef with TensorFlow on Kaggle Join Challenge

tf.nn.softmax

Computes softmax activations.

Used in the notebooks

Used in the guide Used in the tutorials

Used for multi-class predictions. The sum of all outputs generated by softmax is 1.

This function performs the equivalent of

softmax = tf.exp(logits) / tf.reduce_sum(tf.exp(logits), axis)

Example usage:

softmax = tf.nn.softmax([-1, 0., 1.])
softmax
<tf.Tensor: shape=(3,), dtype=float32,
numpy=array([0.09003057, 0.24472848, 0.66524094], dtype=float32)>
sum(softmax)
<tf.Tensor: shape=(), dtype=float32, numpy=1.0>

logits A non-empty Tensor. Must be one of the following types: half, float32, float64.
axis The dimension softmax would be performed on. The default is -1 which indicates the last dimension.
name A name for the operation (optional).

A Tensor. Has the same type and shape as logits.

InvalidArgumentError if logits is empty or axis is beyond the last dimension of logits.