Fake-quantize the 'inputs' tensor of type float via global float scalars
tf.quantization.fake_quant_with_min_max_vars(
inputs: Annotated[Any, _atypes.Float32],
min: Annotated[Any, _atypes.Float32],
max: Annotated[Any, _atypes.Float32],
num_bits: int = 8,
narrow_range: bool = False,
name=None
) -> Annotated[Any, _atypes.Float32]
Fake-quantize the inputs tensor of type float via global float scalars
min and max to outputs tensor of same shape as inputs.
Attributes
[min; max]define the clamping range for theinputsdata.inputsvalues are quantized into the quantization range ([0; 2^num_bits - 1]whennarrow_rangeis false and[1; 2^num_bits - 1]when it is true) and then de-quantized and output as floats in[min; max]interval.num_bitsis the bitwidth of the quantization; between 2 and 16, inclusive.
Before quantization, min and max values are adjusted with the following
logic.
It is suggested to have min <= 0 <= max. If 0 is not in the range of values,
the behavior can be unexpected:
- If
0 < min < max:min_adj = 0andmax_adj = max - min. - If
min < max < 0:min_adj = min - maxandmax_adj = 0. - If
min <= 0 <= max:scale = (max - min) / (2^num_bits - 1),min_adj = scale * round(min / scale)andmax_adj = max + min_adj - min.
This operation has a gradient and thus allows for training min and max
values.
Returns | |
|---|---|
A Tensor of type float32.
|