Creates a dataset that applies f to the outputs of input_dataset.
tf.raw_ops.ParallelInterleaveDatasetV4(
    input_dataset,
    other_arguments,
    cycle_length,
    block_length,
    buffer_output_elements,
    prefetch_input_elements,
    num_parallel_calls,
    f,
    output_types,
    output_shapes,
    deterministic='default',
    metadata='',
    name=None
)
The resulting dataset is similar to the InterleaveDataset, except that the
dataset will fetch records from the interleaved datasets in parallel.
The tf.data Python API creates instances of this op from
Dataset.interleave() when the num_parallel_calls parameter of that method
is set to any value other than None.
By default, the output of this dataset will be deterministic, which may result
in the dataset blocking if the next data item to be returned isn't available.
In order to avoid head-of-line blocking, one can either set the deterministic
attribute to "false", or leave it as "default" and set the
experimental_deterministic parameter of tf.data.Options to False.
This can improve performance at the expense of non-determinism.
| Args | |
|---|---|
| input_dataset | A Tensorof typevariant.
Dataset that produces a stream of arguments for the functionf. | 
| other_arguments | A list of Tensorobjects.
Additional arguments to pass tofbeyond those produced byinput_dataset.
Evaluated once when the dataset is instantiated. | 
| cycle_length | A Tensorof typeint64.
Number of datasets (each created by applyingfto the elements ofinput_dataset) among which theParallelInterleaveDatasetV2will cycle in a
round-robin fashion. | 
| block_length | A Tensorof typeint64.
Number of elements at a time to produce from each interleaved invocation of a
dataset returned byf. | 
| buffer_output_elements | A Tensorof typeint64.
The number of elements each iterator being interleaved should buffer (similar
to the.prefetch()transformation for each interleaved iterator). | 
| prefetch_input_elements | A Tensorof typeint64.
Determines the number of iterators to prefetch, allowing buffers to warm up and
data to be pre-fetched without blocking the main thread. | 
| num_parallel_calls | A Tensorof typeint64.
Determines the number of threads that should be used for fetching data from
input datasets in parallel. The Python APItf.data.experimental.AUTOTUNEconstant can be used to indicate that the level of parallelism should be autotuned. | 
| f | A function decorated with @Defun.
A function mapping elements of input_dataset, concatenated withother_arguments, to a Dataset variant that contains elements matchingoutput_typesandoutput_shapes. | 
| output_types | A list of tf.DTypesthat has length>= 1. | 
| output_shapes | A list of shapes (each a tf.TensorShapeor list ofints) that has length>= 1. | 
| deterministic | An optional string. Defaults to"default".
A string indicating the op-level determinism to use. Deterministic controls
whether the interleave is allowed to return elements out of order if the next
element to be returned isn't available, but a later element is. Options are
"true", "false", and "default". "default" indicates that determinism should be
decided by theexperimental_deterministicparameter oftf.data.Options. | 
| metadata | An optional string. Defaults to"". | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typevariant. |