tf.raw_ops.QuantizeAndDequantizeV4
Stay organized with collections
Save and categorize content based on your preferences.
Quantizes then dequantizes a tensor.
tf.raw_ops.QuantizeAndDequantizeV4(
input,
input_min,
input_max,
signed_input=True,
num_bits=8,
range_given=False,
round_mode='HALF_TO_EVEN',
narrow_range=False,
axis=-1,
name=None
)
This is almost identical to QuantizeAndDequantizeV2, except that it returns a
gradient of 1 for inputs that are within the quantization range, or 0 otherwise.
Args |
input
|
A Tensor . Must be one of the following types: bfloat16 , half , float32 , float64 .
Tensor to quantize and then dequantize.
|
input_min
|
A Tensor . Must have the same type as input .
If range_given == True , this specifies the minimum input value that needs to
be represented, otherwise it is determined from the min value of the input
tensor.
|
input_max
|
A Tensor . Must have the same type as input .
If range_given == True , this specifies the maximum input value that needs to
be represented, otherwise it is determined from the max value of the input
tensor.
|
signed_input
|
An optional bool . Defaults to True .
Whether the quantization is signed or unsigned. (actually this parameter should
have been called signed_output )
|
num_bits
|
An optional int . Defaults to 8 .
The bitwidth of the quantization.
|
range_given
|
An optional bool . Defaults to False .
Whether the range is given or should be determined from the input tensor.
|
round_mode
|
An optional string from: "HALF_TO_EVEN", "HALF_UP" . Defaults to "HALF_TO_EVEN" .
The 'round_mode' attribute controls which rounding tie-breaking algorithm is
used when rounding float values to their quantized equivalents. The following
rounding modes are currently supported:
- HALF_TO_EVEN: this is the default round_mode.
- HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5
rounds up to -7.
|
narrow_range
|
An optional bool . Defaults to False .
If True, then the absolute value of the quantized minimum value is the same as
the quantized maximum value, instead of 1 greater.
i.e. for 8 bit quantization, the minimum value is -127 instead of -128.
|
axis
|
An optional int . Defaults to -1 .
If specified, this axis is treated as a channel or slice axis, and a separate
quantization range is used for each channel or slice along this axis.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as input .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.QuantizeAndDequantizeV4\n\n\u003cbr /\u003e\n\nQuantizes then dequantizes a tensor.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.QuantizeAndDequantizeV4`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/QuantizeAndDequantizeV4)\n\n\u003cbr /\u003e\n\n tf.raw_ops.QuantizeAndDequantizeV4(\n input,\n input_min,\n input_max,\n signed_input=True,\n num_bits=8,\n range_given=False,\n round_mode='HALF_TO_EVEN',\n narrow_range=False,\n axis=-1,\n name=None\n )\n\nThis is almost identical to QuantizeAndDequantizeV2, except that it returns a\ngradient of 1 for inputs that are within the quantization range, or 0 otherwise.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`. Tensor to quantize and then dequantize. |\n| `input_min` | A `Tensor`. Must have the same type as `input`. If `range_given == True`, this specifies the minimum input value that needs to be represented, otherwise it is determined from the min value of the `input` tensor. |\n| `input_max` | A `Tensor`. Must have the same type as `input`. If `range_given == True`, this specifies the maximum input value that needs to be represented, otherwise it is determined from the max value of the `input` tensor. |\n| `signed_input` | An optional `bool`. Defaults to `True`. Whether the quantization is signed or unsigned. (actually this parameter should have been called **`signed_output`**) |\n| `num_bits` | An optional `int`. Defaults to `8`. The bitwidth of the quantization. |\n| `range_given` | An optional `bool`. Defaults to `False`. Whether the range is given or should be determined from the `input` tensor. |\n| `round_mode` | An optional `string` from: `\"HALF_TO_EVEN\", \"HALF_UP\"`. Defaults to `\"HALF_TO_EVEN\"`. The 'round_mode' attribute controls which rounding tie-breaking algorithm is used when rounding float values to their quantized equivalents. The following rounding modes are currently supported: \u003cbr /\u003e - HALF_TO_EVEN: this is the default round_mode. - HALF_UP: round towards positive. In this mode 7.5 rounds up to 8 and -7.5 rounds up to -7. |\n| `narrow_range` | An optional `bool`. Defaults to `False`. If True, then the absolute value of the quantized minimum value is the same as the quantized maximum value, instead of 1 greater. i.e. for 8 bit quantization, the minimum value is -127 instead of -128. |\n| `axis` | An optional `int`. Defaults to `-1`. If specified, this axis is treated as a channel or slice axis, and a separate quantization range is used for each channel or slice along this axis. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `input`. ||\n\n\u003cbr /\u003e"]]