Computes a tensor such that
\(output_i = \prod_j data_j\) where the product is over j such
that segment_ids[j] == i.
If the product is empty for a given segment ID i, output[i] = 1.
The only difference with SegmentProd is the additional input num_segments.
This helps in evaluating the output shape in compile time.
num_segments should be consistent with segment_ids.
e.g. Max(segment_ids) - 1 should be equal to num_segments for a 1-d segment_ids
With inconsistent num_segments, the op still runs. only difference is,
the output takes the size of num_segments irrespective of size of segment_ids and data.
for num_segments less than expected output size, the last elements are ignored
for num_segments more than the expected output size, last elements are assigned 1.
A Tensor. Must be one of the following types: float32, float64, int32, uint8, int16, int8, complex64, int64, qint8, quint8, qint32, bfloat16, qint16, quint16, uint16, complex128, half, uint32, uint64.
segment_ids
A Tensor. Must be one of the following types: int32, int64.
A 1-D tensor whose size is equal to the size of data's
first dimension. Values should be sorted and can be repeated.
The values must be less than num_segments.
num_segments
A Tensor. Must be one of the following types: int32, int64.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.SegmentProdV2\n\nComputes the product along segments of a tensor.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.SegmentProdV2`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/SegmentProdV2)\n\n\u003cbr /\u003e\n\n tf.raw_ops.SegmentProdV2(\n data, segment_ids, num_segments, name=None\n )\n\nRead\n[the section on segmentation](https://tensorflow.org/api_docs/python/tf/math#Segmentation)\nfor an explanation of segments.\n\nComputes a tensor such that\n\\\\(output_i = \\\\prod_j data_j\\\\) where the product is over `j` such\nthat `segment_ids[j] == i`.\n\nIf the product is empty for a given segment ID `i`, `output[i] = 1`.\n| **Note:** That this op is currently only supported with jit_compile=True.\n\nThe only difference with SegmentProd is the additional input `num_segments`.\nThis helps in evaluating the output shape in compile time.\n`num_segments` should be consistent with segment_ids.\ne.g. Max(segment_ids) - 1 should be equal to `num_segments` for a 1-d segment_ids\nWith inconsistent num_segments, the op still runs. only difference is,\nthe output takes the size of num_segments irrespective of size of segment_ids and data.\nfor num_segments less than expected output size, the last elements are ignored\nfor num_segments more than the expected output size, last elements are assigned 1.\n\n#### For example:\n\n @tf.function(jit_compile=True)\n def test(c):\n return tf.raw_ops.SegmentProdV2(data=c, segment_ids=tf.constant([0, 0, 1]), num_segments=2)\n c = tf.constant([[1,2,3,4], [4, 3, 2, 1], [5,6,7,8]])\n test(c).numpy()\n array([[4, 6, 6, 4],\n [5, 6, 7, 8]], dtype=int32)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `data` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. |\n| `segment_ids` | A `Tensor`. Must be one of the following types: `int32`, `int64`. A 1-D tensor whose size is equal to the size of `data`'s first dimension. Values should be sorted and can be repeated. The values must be less than `num_segments`. \u003cbr /\u003e | **Caution:** The values are always validated to be sorted on CPU, never validated on GPU. |\n| `num_segments` | A `Tensor`. Must be one of the following types: `int32`, `int64`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `data`. ||\n\n\u003cbr /\u003e"]]