tf.raw_ops.SparseDenseCwiseAdd
Stay organized with collections
Save and categorize content based on your preferences.
Adds up a SparseTensor and a dense Tensor, using these special rules:
tf.raw_ops.SparseDenseCwiseAdd(
sp_indices, sp_values, sp_shape, dense, name=None
)
(1) Broadcasts the dense side to have the same shape as the sparse side, if
eligible;
(2) Then, only the dense values pointed to by the indices of the SparseTensor
participate in the cwise addition.
By these rules, the result is a logical SparseTensor with exactly the same
indices and shape, but possibly with different non-zero values. The output of
this Op is the resultant non-zero values.
Args |
sp_indices
|
A Tensor of type int64 .
2-D. N x R matrix with the indices of non-empty values in a
SparseTensor, possibly not in canonical ordering.
|
sp_values
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , complex64 , int64 , qint8 , quint8 , qint32 , bfloat16 , qint16 , quint16 , uint16 , complex128 , half , uint32 , uint64 .
1-D. N non-empty values corresponding to sp_indices .
|
sp_shape
|
A Tensor of type int64 .
1-D. Shape of the input SparseTensor.
|
dense
|
A Tensor . Must have the same type as sp_values .
R -D. The dense Tensor operand.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor . Has the same type as sp_values .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.raw_ops.SparseDenseCwiseAdd\n\n\u003cbr /\u003e\n\nAdds up a SparseTensor and a dense Tensor, using these special rules:\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.raw_ops.SparseDenseCwiseAdd`](https://www.tensorflow.org/api_docs/python/tf/raw_ops/SparseDenseCwiseAdd)\n\n\u003cbr /\u003e\n\n tf.raw_ops.SparseDenseCwiseAdd(\n sp_indices, sp_values, sp_shape, dense, name=None\n )\n\n(1) Broadcasts the dense side to have the same shape as the sparse side, if\neligible;\n(2) Then, only the dense values pointed to by the indices of the SparseTensor\nparticipate in the cwise addition.\n\nBy these rules, the result is a logical SparseTensor with exactly the same\nindices and shape, but possibly with different non-zero values. The output of\nthis Op is the resultant non-zero values.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `sp_indices` | A `Tensor` of type `int64`. 2-D. `N x R` matrix with the indices of non-empty values in a SparseTensor, possibly not in canonical ordering. |\n| `sp_values` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `complex64`, `int64`, `qint8`, `quint8`, `qint32`, `bfloat16`, `qint16`, `quint16`, `uint16`, `complex128`, `half`, `uint32`, `uint64`. 1-D. `N` non-empty values corresponding to `sp_indices`. |\n| `sp_shape` | A `Tensor` of type `int64`. 1-D. Shape of the input SparseTensor. |\n| `dense` | A `Tensor`. Must have the same type as `sp_values`. `R`-D. The dense Tensor operand. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `sp_values`. ||\n\n\u003cbr /\u003e"]]