|  View source on GitHub | 
Searches for where a value would go in a sorted sequence.
tf.searchsorted(
    sorted_sequence,
    values,
    side='left',
    out_type=tf.dtypes.int32,
    name=None
)
This is not a method for checking containment (like python in).
The typical use case for this operation is "binning", "bucketing", or
"discretizing". The values are assigned to bucket-indices based on the
edges listed in sorted_sequence. This operation
returns the bucket-index for each value.
edges = [-1, 3.3, 9.1, 10.0]values = [0.0, 4.1, 12.0]tf.searchsorted(edges, values).numpy()array([1, 2, 4], dtype=int32)
The side argument controls which index is returned if a value lands exactly
on an edge:
seq = [0, 3, 9, 10, 10]values = [0, 4, 10]tf.searchsorted(seq, values).numpy()array([0, 2, 3], dtype=int32)tf.searchsorted(seq, values, side="right").numpy()array([1, 2, 5], dtype=int32)
The axis is not settable for this operation. It always operates on the
innermost dimension (axis=-1). The operation will accept any number of
outer dimensions. Here it is applied to the rows of a matrix:
sorted_sequence = [[0., 3., 8., 9., 10.],[1., 2., 3., 4., 5.]]values = [[9.8, 2.1, 4.3],[0.1, 6.6, 4.5, ]]tf.searchsorted(sorted_sequence, values).numpy()array([[4, 1, 2],[0, 5, 4]], dtype=int32)
| Args | |
|---|---|
| sorted_sequence | N-D Tensorcontaining a sorted sequence. | 
| values | N-D Tensorcontaining the search values. | 
| side | 'left' or 'right'; 'left' corresponds to lower_bound and 'right' to upper_bound. | 
| out_type | The output type ( int32orint64).  Default istf.int32. | 
| name | Optional name for the operation. | 
| Returns | |
|---|---|
| An N-D Tensorthe size ofvaluescontaining the result of applying
either lower_bound or upper_bound (depending on side) to each value.  The
result is not a global index to the entireTensor, but the index in the
last dimension. | 
| Raises | |
|---|---|
| ValueError | If the last dimension of sorted_sequence >= 2^31-1elements.
If the total size ofvaluesexceeds2^31 - 1elements.
If the firstN-1dimensions of the two tensors don't match. |