tf.signal.rfft2d
Stay organized with collections
Save and categorize content based on your preferences.
2D real-valued fast Fourier transform.
tf.signal.rfft2d(
input_tensor, fft_length=None, name=None
)
Used in the notebooks
Computes the 2-dimensional discrete Fourier transform of a real-valued signal
over the inner-most 2 dimensions of input
.
Since the DFT of a real signal is Hermitian-symmetric, RFFT2D
only returns the
fft_length / 2 + 1
unique components of the FFT for the inner-most dimension
of output
: the zero-frequency term, followed by the fft_length / 2
positive-frequency terms.
Along each axis RFFT2D
is computed on, if fft_length
is smaller than the
corresponding dimension of input
, the dimension is cropped. If it is larger,
the dimension is padded with zeros.
Args |
input
|
A Tensor . Must be one of the following types: float32 , float64 .
A float32 tensor.
|
fft_length
|
A Tensor of type int32 .
An int32 tensor of shape [2]. The FFT length for each dimension.
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type Tcomplex .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[],null,["# tf.signal.rfft2d\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.16.1/tensorflow/python/ops/signal/fft_ops.py#L140-L166) |\n\n2D real-valued fast Fourier transform.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.signal.rfft2d`](https://www.tensorflow.org/api_docs/python/tf/signal/rfft2d), [`tf.compat.v1.spectral.rfft2d`](https://www.tensorflow.org/api_docs/python/tf/signal/rfft2d)\n\n\u003cbr /\u003e\n\n tf.signal.rfft2d(\n input_tensor, fft_length=None, name=None\n )\n\n### Used in the notebooks\n\n| Used in the tutorials |\n|-----------------------------------------------------------------------------------------------|\n| - [Scalable model compression](https://www.tensorflow.org/tutorials/optimization/compression) |\n\nComputes the 2-dimensional discrete Fourier transform of a real-valued signal\nover the inner-most 2 dimensions of `input`.\n\nSince the DFT of a real signal is Hermitian-symmetric, `RFFT2D` only returns the\n`fft_length / 2 + 1` unique components of the FFT for the inner-most dimension\nof `output`: the zero-frequency term, followed by the `fft_length / 2`\npositive-frequency terms.\n\nAlong each axis `RFFT2D` is computed on, if `fft_length` is smaller than the\ncorresponding dimension of `input`, the dimension is cropped. If it is larger,\nthe dimension is padded with zeros.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------------|------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor`. Must be one of the following types: `float32`, `float64`. A float32 tensor. |\n| `fft_length` | A `Tensor` of type `int32`. An int32 tensor of shape \\[2\\]. The FFT length for each dimension. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `Tcomplex`. ||\n\n\u003cbr /\u003e"]]