tf.sparse.maximum
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Returns the element-wise max of two SparseTensors.
tf.sparse.maximum(
    sp_a, sp_b, name=None
)
Assumes the two SparseTensors have the same shape, i.e., no broadcasting.
| Example | 
|---|
| >>> sp_zero = tf.sparse.SparseTensor([[0]], [0], [7])
>>> sp_one = tf.sparse.SparseTensor([[1]], [1], [7])
>>> res = tf.sparse.maximum(sp_zero, sp_one)
>>> res.indices
<tf.Tensor: shape=(2, 1), dtype=int64, numpy=
array([[0],
       [1]])>
>>> res.values
<tf.Tensor: shape=(2,), dtype=int32, numpy=array([0, 1], dtype=int32)>
>>> res.dense_shape
<tf.Tensor: shape=(1,), dtype=int64, numpy=array([7])>
 | 
The reduction version of this elementwise operation is tf.sparse.reduce_max
| Args | 
|---|
| sp_a | a SparseTensoroperand whose dtype is real, and indices
lexicographically ordered. | 
| sp_b | the other SparseTensoroperand with the same requirements (and the
same shape). | 
| name | optional name of the operation. | 
| Returns | 
|---|
| output | the output SparseTensor. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2024-04-26 UTC.
  
  
  
    
      [null,null,["Last updated 2024-04-26 UTC."],[],[]]