|  View source on GitHub | 
Stacks a list of rank-R tensors into one rank-(R+1) tensor.
tf.stack(
    values, axis=0, name='stack'
)
Used in the notebooks
| Used in the guide | Used in the tutorials | 
|---|---|
See also tf.concat, tf.tile, tf.repeat.
Packs the list of tensors in values into a tensor with rank one higher than
each tensor in values, by packing them along the axis dimension.
Given a list of length N of tensors of shape (A, B, C);
if axis == 0 then the output tensor will have the shape (N, A, B, C).
if axis == 1 then the output tensor will have the shape (A, N, B, C).
Etc.
For example:
x = tf.constant([1, 4])y = tf.constant([2, 5])z = tf.constant([3, 6])tf.stack([x, y, z])<tf.Tensor: shape=(3, 2), dtype=int32, numpy=array([[1, 4],[2, 5],[3, 6]], dtype=int32)>tf.stack([x, y, z], axis=1)<tf.Tensor: shape=(2, 3), dtype=int32, numpy=array([[1, 2, 3],[4, 5, 6]], dtype=int32)>
This is the opposite of unstack.  The numpy equivalent is np.stack
np.array_equal(np.stack([x, y, z]), tf.stack([x, y, z]))True
| Returns | |
|---|---|
| output | A stacked Tensorwith the same type asvalues. | 
| Raises | |
|---|---|
| ValueError | If axisis out of the range [-(R+1), R+1). |