View source on GitHub
|
Groups tensors together.
tf.tuple(
tensors, control_inputs=None, name=None
)
The returned tensors have the same value as the input tensors, but they are computed only after all the input tensors have been computed.
See also tf.group and tf.control_dependencies.
Example:
with tf.Graph().as_default():with tf.compat.v1.Session() as sess:v = tf.Variable(0.0)a = tf.constant(1.0)sess.run(tf.compat.v1.global_variables_initializer())for i in range(5):update_op = v.assign_add(1.0)b = a + vres_b = sess.run(b)res_v = sess.run(v)print(res_v)0.00.00.00.00.0
with tf.Graph().as_default():with tf.compat.v1.Session() as sess:v = tf.Variable(0.0)a = tf.constant(1.0)sess.run(tf.compat.v1.global_variables_initializer())for i in range(5):update_op = v.assign_add(1.0)calc = [a + v]# `tf.tuple` ensures `update_op` is run before `b`b = tf.tuple(calc, [tf.group(update_op)])res_b = sess.run(b)res_v = sess.run(v)print(res_v)1.02.03.04.05.0
Returns | |
|---|---|
Same as tensors.
|
Raises | |
|---|---|
ValueError
|
If tensors does not contain any Tensor or IndexedSlices.
|
TypeError
|
If control_inputs is not a list of Operation or Tensor
objects.
|
View source on GitHub