Computes Quantized Rectified Linear X: min(max(features, 0), max_value)
tf.compat.v1.nn.quantized_relu_x(
features: Annotated[Any, TV_QuantizedReluX_Tinput],
max_value: Annotated[Any, _atypes.Float32],
min_features: Annotated[Any, _atypes.Float32],
max_features: Annotated[Any, _atypes.Float32],
out_type: TV_QuantizedReluX_out_type = tf.dtypes.quint8,
name=None
)
Args | |
|---|---|
features
|
A Tensor. Must be one of the following types: qint8, quint8, qint32, qint16, quint16.
|
max_value
|
A Tensor of type float32.
|
min_features
|
A Tensor of type float32.
The float value that the lowest quantized value represents.
|
max_features
|
A Tensor of type float32.
The float value that the highest quantized value represents.
|
out_type
|
An optional tf.DType from: tf.qint8, tf.quint8, tf.qint32, tf.qint16, tf.quint16. Defaults to tf.quint8.
|
name
|
A name for the operation (optional). |