|  View source on GitHub | 
Represents discretized dense input bucketed by boundaries. (deprecated)
tf.feature_column.bucketized_column(
    source_column, boundaries
)
Used in the notebooks
| Used in the guide | Used in the tutorials | 
|---|---|
Buckets include the left boundary, and exclude the right boundary. Namely,
boundaries=[0., 1., 2.] generates buckets (-inf, 0.), [0., 1.),
[1., 2.), and [2., +inf).
For example, if the inputs are
boundaries = [0, 10, 100]
input tensor = [[-5, 10000]
                [150,   10]
                [5,    100]]
then the output will be
output = [[0, 3]
          [3, 2]
          [1, 3]]
Example:
price = tf.feature_column.numeric_column('price')
bucketized_price = tf.feature_column.bucketized_column(
    price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.io.parse_example(
    ..., features=tf.feature_column.make_parse_example_spec(columns))
dense_tensor = tf.keras.layers.DenseFeatures(columns)(features)
A bucketized_column can also be crossed with another categorical column
using crossed_column:
price = tf.feature_column.numeric_column('price')
# bucketized_column converts numerical feature to a categorical one.
bucketized_price = tf.feature_column.bucketized_column(
    price, boundaries=[...])
# 'keywords' is a string feature.
price_x_keywords = tf.feature_column.crossed_column(
    [bucketized_price, 'keywords'], 50K)
columns = [price_x_keywords, ...]
features = tf.io.parse_example(
    ..., features=tf.feature_column.make_parse_example_spec(columns))
dense_tensor = tf.keras.layers.DenseFeatures(columns)(features)
linear_model = tf.keras.experimental.LinearModel(units=...)(dense_tensor)
| Args | |
|---|---|
| source_column | A one-dimensional dense column which is generated with numeric_column. | 
| boundaries | A sorted list or tuple of floats specifying the boundaries. | 
| Returns | |
|---|---|
| A BucketizedColumn. | 
| Raises | |
|---|---|
| ValueError | If source_columnis not a numeric column, or if it is not
one-dimensional. | 
| ValueError | If boundariesis not a sorted list or tuple. |