ML Community Day is November 9! Join us for updates from TensorFlow, JAX, and more Learn more

tf.keras.metrics.Accuracy

Calculates how often predictions equal labels.

Inherits From: MeanMetricWrapper, Mean, Metric, Layer, Module

Used in the notebooks

Used in the guide Used in the tutorials

This metric creates two local variables, total and count that are used to compute the frequency with which y_pred matches y_true. This frequency is ultimately returned as binary accuracy: an idempotent operation that simply divides total by count.

If sample_weight is None, weights default to 1. Use sample_weight of 0 to mask values.

name (Optional) string name of the metric instance.
dtype (Optional) data type of the metric result.

Standalone usage:

m = tf.keras.metrics.Accuracy()
m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]])
m.result().numpy()
0.75
m.reset_state()
m.update_state([[1], [2], [3], [4]], [[0], [2], [3], [4]],
               sample_weight=[1, 1, 0, 0])
m.result().numpy()
0.5

Usage with compile() API:

model.compile(optimizer='sgd',
              loss='mse',
              metrics=[tf.keras.metrics.Accuracy()])

Methods

reset_state

View source

Resets all of the metric state variables.

This function is called between epochs/steps, when a metric is evaluated during training.

result

View source

Computes and returns the metric value tensor.

Result computation is an idempotent operation that simply calculates the metric value using the state variables.

update_state

View source

Accumulates metric statistics.

For sparse categorical metrics, the shapes of y_true and y_pred are different.

Args
y_true