View source on GitHub
  
 | 
Computes how often targets are in the top K predictions.
Inherits From: MeanMetricWrapper, Mean, Metric
tf.keras.metrics.TopKCategoricalAccuracy(
    k=5, name='top_k_categorical_accuracy', dtype=None
)
Args | |
|---|---|
k
 | 
(Optional) Number of top elements to look at for computing accuracy.
Defaults to 5.
 | 
name
 | 
(Optional) string name of the metric instance. | 
dtype
 | 
(Optional) data type of the metric result. | 
Example:
m = keras.metrics.TopKCategoricalAccuracy(k=1)m.update_state([[0, 0, 1], [0, 1, 0]],[[0.1, 0.9, 0.8], [0.05, 0.95, 0]])m.result()0.5
m.reset_state()m.update_state([[0, 0, 1], [0, 1, 0]],[[0.1, 0.9, 0.8], [0.05, 0.95, 0]],sample_weight=[0.7, 0.3])m.result()0.3
Usage with compile() API:
model.compile(optimizer='sgd',
              loss='categorical_crossentropy',
              metrics=[keras.metrics.TopKCategoricalAccuracy()])
Attributes | |
|---|---|
dtype
 | 
|
variables
 | 
|
Methods
add_variable
add_variable(
    shape, initializer, dtype=None, aggregation='sum', name=None
)
add_weight
add_weight(
    shape=(), initializer=None, dtype=None, name=None
)
from_config
@classmethodfrom_config( config )
get_config
get_config()
Return the serializable config of the metric.
reset_state
reset_state()
Reset all of the metric state variables.
This function is called between epochs/steps, when a metric is evaluated during training.
result
result()
Compute the current metric value.
| Returns | |
|---|---|
| A scalar tensor, or a dictionary of scalar tensors. | 
stateless_reset_state
stateless_reset_state()
stateless_result
stateless_result(
    metric_variables
)
stateless_update_state
stateless_update_state(
    metric_variables, *args, **kwargs
)
update_state
update_state(
    y_true, y_pred, sample_weight=None
)
Accumulate statistics for the metric.
__call__
__call__(
    *args, **kwargs
)
Call self as a function.
    View source on GitHub