tf.keras.optimizers.schedules.deserialize
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Instantiates a LearningRateSchedule object from a serialized form.
tf.keras.optimizers.schedules.deserialize(
    config, custom_objects=None
)
| Args | 
|---|
| config | The serialized form of the LearningRateSchedule. Dictionary of
the form {'class_name': str, 'config': dict}. | 
| custom_objects | A dictionary mapping class names (or function names) of
custom (non-Keras) objects to class/functions. | 
| Returns | 
|---|
| A LearningRateScheduleobject. | 
Example:
# Configuration for PolynomialDecay
config = {
    'class_name': 'PolynomialDecay',
    'config': {'cycle': False,
        'decay_steps': 10000,
        'end_learning_rate': 0.01,
        'initial_learning_rate': 0.1,
        'name': None,
        'power': 0.5
    }
}
lr_schedule = keras.optimizers.schedules.deserialize(config)
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2024-06-07 UTC.
  
  
  
    
      [null,null,["Last updated 2024-06-07 UTC."],[],[]]