|  View source on GitHub | 
Outputs random values from a normal distribution.
tf.random.normal(
    shape,
    mean=0.0,
    stddev=1.0,
    dtype=tf.dtypes.float32,
    seed=None,
    name=None
)
Used in the notebooks
| Used in the guide | Used in the tutorials | 
|---|---|
Example that generates a new set of random values every time:
tf.random.set_seed(5);tf.random.normal([4], 0, 1, tf.float32)<tf.Tensor: shape=(4,), dtype=float32, numpy=..., dtype=float32)>
Example that outputs a reproducible result:
tf.random.set_seed(5);tf.random.normal([2,2], 0, 1, tf.float32, seed=1)<tf.Tensor: shape=(2, 2), dtype=float32, numpy=array([[-1.3768897 , -0.01258316],[-0.169515 , 1.0824056 ]], dtype=float32)>
In this case, we are setting both the global and operation-level seed to
ensure this result is reproducible.  See tf.random.set_seed for more
information.
| Args | |
|---|---|
| shape | A 1-D integer Tensor or Python array. The shape of the output tensor. | 
| mean | A Tensor or Python value of type dtype, broadcastable withstddev.
The mean of the normal distribution. | 
| stddev | A Tensor or Python value of type dtype, broadcastable withmean.
The standard deviation of the normal distribution. | 
| dtype | The float type of the output: float16,bfloat16,float32,float64. Defaults tofloat32. | 
| seed | A Python integer. Used to create a random seed for the distribution.
See tf.random.set_seedfor behavior. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A tensor of the specified shape filled with random normal values. |