Decodes each string in input into a sequence of Unicode code points.
tf.strings.unicode_decode(
    input,
    input_encoding,
    errors='replace',
    replacement_char=65533,
    replace_control_characters=False,
    name=None
)
Used in the notebooks
result[i1...iN, j] is the Unicode codepoint for the jth character in
input[i1...iN], when decoded using input_encoding.
| Args | 
|---|
| input | An Ndimensional potentially raggedstringtensor with shape[D1...DN].Nmust be statically known. | 
| input_encoding | String name for the unicode encoding that should be used to
decode each string. | 
| errors | Specifies the response when an input string can't be converted
using the indicated encoding. One of: 
'strict': Raise an exception for any illegal substrings.'replace': Replace illegal substrings withreplacement_char.'ignore': Skip illegal substrings. | 
| replacement_char | The replacement codepoint to be used in place of invalid
substrings in inputwhenerrors='replace'; and in place of C0 control
characters ininputwhenreplace_control_characters=True. | 
| replace_control_characters | Whether to replace the C0 control characters (U+0000 - U+001F)with thereplacement_char. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A N+1dimensionalint32tensor with shape[D1...DN, (num_chars)].
The returned tensor is atf.Tensorifinputis a scalar, or atf.RaggedTensorotherwise. | 
Example:
input = [s.encode('utf8') for s in (u'G\xf6\xf6dnight', u'\U0001f60a')]
tf.strings.unicode_decode(input, 'UTF-8').to_list()
[[71, 246, 246, 100, 110, 105, 103, 104, 116], [128522]]