View source on GitHub
|
Calculate the sufficient statistics for the mean and variance of x.
tf.compat.v1.nn.sufficient_statistics(
x, axes, shift=None, keep_dims=None, name=None, keepdims=None
)
These sufficient statistics are computed using the one pass algorithm on an input that's optionally shifted. See: https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance#Computing_shifted_data
For example:
t = [[1, 2, 3], [4, 5, 6]]sufficient_statistics(t, [1])(<tf.Tensor: shape=(), dtype=int32, numpy=3>, <tf.Tensor: shape=(2,),dtype=int32, numpy=array([ 6, 15], dtype=int32)>, <tf.Tensor: shape=(2,),dtype=int32, numpy=array([14, 77], dtype=int32)>, None)sufficient_statistics(t, [-1])(<tf.Tensor: shape=(), dtype=int32, numpy=3>, <tf.Tensor: shape=(2,),dtype=int32, numpy=array([ 6, 15], dtype=int32)>, <tf.Tensor: shape=(2,),dtype=int32, numpy=array([14, 77], dtype=int32)>, None)
Returns | |
|---|---|
Four Tensor objects of the same type as x:
|
View source on GitHub