|  View source on GitHub | 
Initializer that adapts its scale to the shape of its input tensors.
Inherits From: Initializer
tf.keras.initializers.VarianceScaling(
    scale=1.0,
    mode='fan_in',
    distribution='truncated_normal',
    seed=None
)
Used in the notebooks
| Used in the tutorials | 
|---|
With distribution="truncated_normal" or "untruncated_normal", samples are
drawn from a truncated/untruncated normal distribution with a mean of zero
and a standard deviation (after truncation, if used) stddev = sqrt(scale /
n), where n is:
- number of input units in the weight tensor, if mode="fan_in"
- number of output units, if mode="fan_out"
- average of the numbers of input and output units, if mode="fan_avg"
With distribution="uniform", samples are drawn from a uniform distribution
within [-limit, limit], where limit = sqrt(3 * scale / n).
Examples:
# Standalone usage:initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')values = initializer(shape=(2, 2))
# Usage in a Keras layer:initializer = VarianceScaling(scale=0.1, mode='fan_in', distribution='uniform')layer = Dense(3, kernel_initializer=initializer)
Methods
clone
clone()
from_config
@classmethodfrom_config( config )
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | |
|---|---|
| config | A Python dictionary, the output of get_config(). | 
| Returns | |
|---|---|
| An Initializerinstance. | 
get_config
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
| Returns | |
|---|---|
| A JSON-serializable Python dict. | 
__call__
__call__(
    shape, dtype=None
)
Returns a tensor object initialized as specified by the initializer.
| Args | |
|---|---|
| shape | Shape of the tensor. | 
| dtype | Optional dtype of the tensor. |