|  View source on GitHub | 
A LearningRateSchedule that uses an exponential decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps,
    decay_rate,
    staircase=False,
    name='ExponentialDecay'
)
Used in the notebooks
| Used in the guide | 
|---|
When training a model, it is often useful to lower the learning rate as the training progresses. This schedule applies an exponential decay function to an optimizer step, given a provided initial learning rate.
The schedule is a 1-arg callable that produces a decayed learning rate when passed the current optimizer step. This can be useful for changing the learning rate value across different invocations of optimizer functions. It is computed as:
def decayed_learning_rate(step):
    return initial_learning_rate * decay_rate ^ (step / decay_steps)
If the argument staircase is True, then step / decay_steps is
an integer division and the decayed learning rate follows a
staircase function.
You can pass this schedule directly into a keras.optimizers.Optimizer
as the learning rate.
Example: When fitting a Keras model, decay every 100000 steps with a base
of 0.96:
initial_learning_rate = 0.1
lr_schedule = keras.optimizers.schedules.ExponentialDecay(
    initial_learning_rate,
    decay_steps=100000,
    decay_rate=0.96,
    staircase=True)
model.compile(optimizer=keras.optimizers.SGD(learning_rate=lr_schedule),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])
model.fit(data, labels, epochs=5)
The learning rate schedule is also serializable and deserializable using
keras.optimizers.schedules.serialize and
keras.optimizers.schedules.deserialize.
| Returns | |
|---|---|
| A 1-arg callable learning rate schedule that takes the current optimizer
step and outputs the decayed learning rate, a scalar tensor of the
same type as initial_learning_rate. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a LearningRateSchedule from its config.
| Args | |
|---|---|
| config | Output of get_config(). | 
| Returns | |
|---|---|
| A LearningRateScheduleinstance. | 
get_config
get_config()
__call__
__call__(
    step
)
Call self as a function.