tf.math.sqrt
Computes element-wise square root of the input tensor.
tf.math.sqrt(
x, name=None
)
Used in the notebooks
Used in the guide |
Used in the tutorials |
|
|
x = tf.constant([[4.0], [16.0]])
tf.sqrt(x)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[2.],
[4.]], dtype=float32)>
y = tf.constant([[-4.0], [16.0]])
tf.sqrt(y)
<tf.Tensor: shape=(2, 1), dtype=float32, numpy=
array([[nan],
[ 4.]], dtype=float32)>
z = tf.constant([[-1.0], [16.0]], dtype=tf.complex128)
tf.sqrt(z)
<tf.Tensor: shape=(2, 1), dtype=complex128, numpy=
array([[0.0+1.j],
[4.0+0.j]])>
Args |
x
|
A tf.Tensor of type bfloat16 , half , float32 , float64 ,
complex64 , complex128
|
name
|
A name for the operation (optional).
|
Returns |
A tf.Tensor of same size, type and sparsity as x .
If x is a SparseTensor , returns
SparseTensor(x.indices, tf.math.sqrt(x.values, ...), x.dense_shape)
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2024-04-26 UTC.
[null,null,["Last updated 2024-04-26 UTC."],[],[]]