Quantizes the SavedModel with the given quantization options.
tf.quantization.experimental.quantize_saved_model(
    saved_model_path: str,
    output_directory: Optional[str] = None,
    quantization_options: Optional[tf.quantization.experimental.QuantizationOptions] = None,
    representative_dataset: Optional[repr_dataset.RepresentativeDatasetOrMapping] = None,
    *,
    overwrite_output_directory: bool = False
) -> autotrackable.AutoTrackable
Example usage:
# Quantizing a model trained with QAT.
quantization_options = tf.quantization.experimental.QuantizationOptions(
    signature_keys=['your_signature_key'],
)
tf.quantization.experimental.quantize_saved_model(
    '/tmp/input_model',
    '/tmp/output_model',
    quantization_options=quantization_options,
)
# When quantizing a model trained without QAT (Post-Training Quantization),
# a representative dataset is required.
representative_dataset = [{"input": tf.random.uniform(shape=(3, 3))}
                      for _ in range(256)]
tf.quantization.experimental.quantize_saved_model(
    '/tmp/input_model',
    '/tmp/output_model',
    quantization_options=quantization_options,
    representative_dataset={'your_signature_key': representative_dataset},
  )
# In addition to preset quantization methods, fine-grained control of
# quantization for each component is also supported.
_QuantizationComponentSpec = (
    tf.quantization.experimental.QuantizationComponentSpec
)
quantization_options = tf.quantization.experimental.QuantizationOptions(
    signature_keys=['your_signature_key'],
    quantization_method=tf.quantization.experimental.QuantizationMethod(
        quantization_component_specs=[
            _QuantizationComponentSpec(
                quantization_component=(
                    _QuantizationComponentSpec.COMPONENT_ACTIVATION
                ),
                tensor_type=_QuantizationComponentSpec.TENSORTYPE_INT_8,
            )
        ]
    )
)
tf.quantization.experimental.quantize_saved_model(
    '/tmp/input_model',
    '/tmp/output_model',
    quantization_options=quantization_options,
)
Args | 
saved_model_path
 | 
Path to the saved model. When representative_dataset is
not provided, this should be a model trained with QAT.
 | 
output_directory
 | 
The path to save the output SavedModel. Set
overwrite_output_directory to True to overwrite any existing contents
in the directory if not empty.
 | 
quantization_options
 | 
A set of options for quantization. If None, it uses
post-training static range quantization with XLA opset by default.
 | 
representative_dataset
 | 
an iterator that returns a dictionary of {input_key:
input_value} or a map from signature key to a dictionary of {input_key:
input_value} that feeds calibration data for quantizing model. The
representative should be provided when the model is a PTQ model. It can be
provided either via this parameter or via the representative_datasets
field in QuantizationOptions.
 | 
overwrite_output_directory
 | 
If set to true, overwrites the output directory
iff it isn't empty. The default value is false.
 | 
Returns | 
| 
A SavedModel object with TF quantization applied, or None if no quantization
is performed.
 | 
Raises | 
ValueError
 | 
When 1) representative_dataset is not provided for non QAT model
for enabling static range quantization, 2) invalid value is provided as
a quantization method, or 3) provide representative dataset via both
argument and QuantizationOptions.
 | 
ValueError
 | 
When the specified quantization method is not yet supported.
 |