Stacks a list of rank-R tensors into one rank-(R+1) RaggedTensor.
tf.ragged.stack(
    values: typing.List[ragged_tensor.RaggedOrDense], axis=0, name=None
)
Given a list of tensors or ragged tensors with the same rank R
(R >= axis), returns a rank-R+1 RaggedTensor result such that
result[i0...iaxis] is [value[i0...iaxis] for value in values].
Examples:
# Stacking two ragged tensors.
t1 = tf.ragged.constant([[1, 2], [3, 4, 5]])
t2 = tf.ragged.constant([[6], [7, 8, 9]])
tf.ragged.stack([t1, t2], axis=0)
<tf.RaggedTensor [[[1, 2], [3, 4, 5]], [[6], [7, 8, 9]]]>
tf.ragged.stack([t1, t2], axis=1)
<tf.RaggedTensor [[[1, 2], [6]], [[3, 4, 5], [7, 8, 9]]]>
# Stacking two dense tensors with different sizes.
t3 = tf.constant([[1, 2, 3], [4, 5, 6]])
t4 = tf.constant([[5], [6], [7]])
tf.ragged.stack([t3, t4], axis=0)
<tf.RaggedTensor [[[1, 2, 3], [4, 5, 6]], [[5], [6], [7]]]>
| Args | 
|---|
| values | A list of tf.Tensorortf.RaggedTensor.  May not be empty. Allvaluesmust have the same rank and the same dtype; but unliketf.stack, they can have arbitrary dimension sizes. | 
| axis | A python integer, indicating the dimension along which to stack.
(Note: Unlike tf.stack, theaxisparameter must be statically known.)
Negative values are supported only if the rank of at least onevaluesvalue is statically known. | 
| name | A name prefix for the returned tensor (optional). | 
| Returns | 
|---|
| A RaggedTensorwith rankR+1(ifR>0).
IfR==0, then the result will be returned as a 1DTensor, sinceRaggedTensorcan only be used whenrank>1.result.ragged_rank=1+max(axis, max(rt.ragged_rank for rt in values])). | 
| Raises | 
|---|
| ValueError | If valuesis empty, ifaxisis out of bounds or if
the input tensors have different ranks. |