|  View source on GitHub | 
Stacks dynamic partitions of a Tensor or RaggedTensor.
tf.ragged.stack_dynamic_partitions(
    data, partitions, num_partitions, name=None
)
Returns a RaggedTensor output with num_partitions rows, where the row
output[i] is formed by stacking all slices data[j1...jN] such that
partitions[j1...jN] = i.  Slices of data are stacked in row-major
order.
If num_partitions is an int (not a Tensor), then this is equivalent to
tf.ragged.stack(tf.dynamic_partition(data, partitions, num_partitions)).
Example:
data = ['a', 'b', 'c', 'd', 'e']partitions = [ 3, 0, 2, 2, 3]num_partitions = 5tf.ragged.stack_dynamic_partitions(data, partitions, num_partitions)<tf.RaggedTensor [[b'b'], [], [b'c', b'd'], [b'a', b'e'], []]>
| Returns | |
|---|---|
| A RaggedTensorcontaining the stacked partitions.  The returned tensor
has the same dtype asdata, and its shape is[num_partitions, (D)] + data.shape[partitions.rank:], where(D)is a
ragged dimension whose length is the number of data slices stacked for
eachpartition. |